Environmental conditions and geomorphologic changes during the Middle–Upper Paleolithic in the southern Iberian Peninsula

Francisco J. Jiménez-Espejo, Joaquín Rodríguez-Vidal, Clive Finlayson, Francisca Martínez-Ruiz, José S. Carrión, Antonio García-Alix, Adina Paytan, Francisco Giles Pacheco, Darren A. Fa, Geraldine Finlayson, Miguel Cortés-Sánchez, Marta Rodrigo Gámiz, José M. González-Donoso, M. Dolores Linares, Luis M. Cáceres, Santiago Fernández, Koichi Iijima, Aranzazu Martínez Aguirre

Keywords: Homo neanderthalensis, Homo sapiens, Middle–Upper Paleolithic transition, Gorham’s Cave, Southern Iberia

1. Introduction

The timing and geography of Homo neanderthalensis’ extinction is well known, but the causes for the extinction remain in dispute (Finlayson et al., 2006). Specifically, the role environmental factors play in this extinction is much debated (e.g., Wolpoff, 1989; Lahr and Foley, 1998; Stringer, 2003; Horan et al., 2005; Roebroeks, 2006; Jiménez-Espejo et al., 2007; Tzedakis et al., 2007; Banks et al., 2008; Finlayson et al., 2008a,b; Zilhão et al., 2010b). The use of combined archeological and palaeclimatic data, together with continued improvements in radiocarbon chronology, can shed light on the relationship between past climate conditions and changes in Homo spp. populations (e.g., Bard et al., 2004; Mellars, 2006; Tzedakis et al., 2007; Vaks et al., 2007; González Sampérez et al., 2009; Blaauw, 2010; Müller et al., 2011; Pinhasi et al., 2011).

Archaeological sites with well-dated Homo spp. presence over extended time intervals are most adequate for investigating the climate/environmental influence on population dynamics. Gorham’s Cave (Gibraltar) is recognized as the last site occupied by Neanderthals (Finlayson et al., 2006; Jennings et al., 2011) with the youngest date for Mousterian Middle Paleolithic occupation, between 28,700 and 27,600 cal. yr BP, at the 1st range Calpal calibration (Weninger et al., 2011)(Tables 1 and 2), and has been occupied for extended time intervals. The last hiatus corresponds to the replacement of Homo neanderthalensis by H. sapiens. Records of dated cave openings, slope breccias and stalactite falls suggest that marked geomorphologic changes, seismic activity and ecological perturbations occurred during the period when Homo replacement took place.

© 2012 Elsevier B.V. All rights reserved.
spp. hiatuses occurred at Gorham’s Cave; the last one represents the extinction of the Neanderthals. The role that local, regional or global factors played in these hiatuses is poorly known, yet understanding linkages between climate and environmental change and the Neanderthals’ extinction may shed light on the causes and timing of the final extinction (e.g., Higham et al., 2006, 2009; Pinhasi et al., 2011). Recent studies indicate that the cognitive capacities of the H. neanderthalensis and Homo sapiens were very similar (Zilhão et al., 2010a; Cortés-Sánchez et al., 2011), and there are doubts about the exclusivity of Neanderthals’ Mousterian tools in Europe (Balter, 2011); genetic mixture was also possible (Green et al., 2010), thus we will use the term Homo spp. (H. spp.) to refer to both throughout the present study.

In order to recognize all the factors that controlled the occupational pattern of Gorham’s Cave and all other places located in the South Iberian refuge, we utilize information from extensive fieldwork, new dates, and a marine sediment record from South Iberia, to understand the environmental conditions affecting the last H. spp. transition. This multidisciplinary paleo-ecological study integrates geomorphological, climatic, paleoseismic, faunal, and archeological records. Calibrated radiometric ages provide a chronology for H. spp. cave occupation, allowing us to relate it to climatic and geomorphological reconstructions of representative marine and continental records. We also examine how local geomorphological characteristics correspond to climatic variations and how these events coincide with H. spp. population hiatuses in Gorham’s Cave.

2. Topographic, climatic and Quaternary historical context of the study region

Gorham’s Cave is located in the Gibraltar promontory (southernmost tip of Iberia; Fig. 1). It was repeatedly occupied by H. spp. populations and was not covered by glaciers during Pleistocene glaciations (Finlayson et al., 2006; Carrion et al., 2008). The limestone substrate in this region contributed to the development of caves and shelters with a unique potential for preserving human and environmental records (Finlayson et al., 2008a). In addition, this area underwent uplifting, which prevented the significant loss of deposit during periods of sea-level rise (Rodríguez-Vidal et al., 2004). Therefore, this unique setting resulted in an excellent archeological record close to the adjacent narrow Alborán marine basin, which is characterized by exceptionally high sedimentation rates, with continuous sedimentary records that allow precise climatic reconstructions (Cacho et al., 2002; Moreno et al., 2005; Martrat et al., 2007; Jiménez-Espejo et al., 2008; Rodrigo-Gámiz et al., 2011).

This region is also characterized by active seismicity linked to tectonic boundaries between the African and Iberian plates. Two major seismogenic zones are identified, one in the west, from Cape St. Vincent to the Gulf of Cádiz area (Baraza et al., 1999; Thiebot and Gutscher, 2006) and the other in the East Alborán Sea basin (Gracia et al., 2006). Evidence from the former indicates that high magnitude earthquakes took place within the Gibraltar area over time (Baptista et al., 1998; Ruiz et al., 2005; Gracia et al., 2006; Gutscher et al., 2006; Vizcaino et al., 2006). Such seismic activity may have also impacted the coastal environments (Benavente et al., 2006; Rodríguez-Vidal et al., 2011).

3. Climate records and age models

The climate record for the studied period was gathered from marine and continental archives. A marine sediment core (TTR-300G, Fig. 1a) from the westernmost Mediterranean Sea, in the Alborán Sea basin, was analyzed at very high resolution. The age model for this core is based on five ^{14}C-AMS dates obtained from monospecific planktonic foraminifera (Globigerina bulloides) at the Leibniz-Labor for Radiometric Dating and Isotope Research and Poznan Radiocarbon Laboratory. The ages were calibrated to calendar years (cal. yr BP) using Calpval software (Weniger et al., 2011) (Table 1); Stable oxygen
Isotope stratigraphy and paleo-sea surface temperatures (SST) of the core were compared with the Greenland Ice Sheet Project 2 (GISP 2) ice-core (Grootes et al., 1993) and the comparison was used to refine the age model. Specifically, the strong relationship between SST oscillations and the Dansgaard–Oeschger (D–O) stadials (e.g., Cacho et al., 1999; Moreno et al., 2005) was used to constrain the ages. The average sedimentation rate in the core was 9.4 cm/ka for the represented period, and oscillated between −6 cm/ka and −17 cm/ka during the Heinrich periods (H), giving a time resolution from ~170 to ~50 years for each sample.

Dates for continental records were determined on pure calcite samples from speleothems and other cave deposits (e.g., calcite flowstone seals). Ages were based on U-series (Laboratory of Física Aplicada I, University of Sevilla, Spain) and 14C-AMS methods (Radio-carbon Laboratory, CNR Roma, Italy). We used an α-spectrometry analytical method to determine the activities of the U-series isotope (Alcaraz-Pelegrina et al., 2012). All given uncertainties were based on propagated errors from counting statistics and presented at the ±1σ (standard deviation) level. In the case of non-pristine calcite samples, several coeval samples, diluted with different HNO₃ concentrations, were analyzed and the ISOPLOT program (Ludwig, 1991) was used to obtain activity ratios and ages (University of Sevilla Laboratory, Spain).

3.1. Material and methods

The location and relief of the studied area is shown in Fig. 1. Key sites for understanding H. spp. environments spanning the period between 20 and 40 ka are Forbes’ Quarry, Devil’s Tower, Rosia Bay, Vanguard Cave North, and Gorham’s, Bray’s, and St. Michael’s Caves (Fig. 1c). At a regional scale, the geological outcrops are located in the Bay of Cádiz and Málaga coast.

The records from these sites are compared to a high resolution (1.5 cm sampling) climate reconstruction of the past 40 ka obtained from the marine record, TTR-300G (black point Fig. 1b). This core was collected during the TTR-Cruise 14-Leg 2 in the eastern Alborán basin. Previous core analyses in this region also confirm the uniqueness of the Alborán Sea record for paleoclimatic reconstruction (e.g., Cacho et al., 2002; Combourieu-Nebout et al., 2002; Martrat et al., 2004). Sediments in the core are grayish olive nannofossil clay and nannofossil-rich silt clay with highly homogeneous coloration (Comas and Ivanov, 2006). Mineralogical and geochemical analyses were performed for paleoclimatic reconstruction.

Major element (Si, Al, and Mg) measurements (Figs. 2 and 3) were obtained by X-ray fluorescence (XRF; Bruker AXS S4 Pioneer) with an analytical error of 2%. Analyses of trace elements (Ba and Zr) were conducted using inductively coupled plasma-mass spectrometry (ICP-MS; Perkin-Elmer Sciex Elan 5000) following HNO₃ + HF digestion. Measurements were made on triplicates with Re and Rh as internal standards. Variation coefficients determined by the dissolution of 10 replicates of powdered samples were 3% and 8% for concentrations of 50 ppm and 5 ppm, respectively (Bea, 1996).

Stable oxygen isotope ratios of calcareous foraminifers from core 300G were also measured. Approximately 25 specimens of G. bulloides were picked from the >125 μm fraction and senescent forms were avoided. Foraminifers were cleaned in an ultrasonic bath to remove fine-fraction contamination, rinsed with distilled water, and thoroughly washed in alcohol. Stable isotopes were measured using a Finnigan MAT 251 mass spectrometer (Isotope Laboratory, Marum, University of Bremen, Germany). All δ¹⁸O data are reported relative to the PDB standard. Analytical reproducibility of the method is approximately ±0.07‰ for δ¹⁸O.

Using planktonic foraminifera assemblages, paleo-sea surface temperatures (SST) estimates for winter and summer were calculated as the mean temperature of three colder and warmer months, respectively. Transfer functions were based on González-Donoso and Linares (1998) who examined more than 300 modalities and used modern analog techniques (MAT) to estimate SST values. We selected.
the ten closest core top samples of the calibration database (i.e., those that show lowest dissimilarity) for each core sample analyzed and calculated the mean SST value, weighting inversely the modern analogs selected as a function of their dissimilarity to the core sample. The SST associated with each sample was obtained from the archives of the National Oceanographic Data Center (NODC) (Conkright et al., 2002). For more information about paleo-SST calibration data set, see Serrano et al. (2007).

3.2. Inorganic geochemical marine proxies

Excess Ba is used as a paleo-productivity proxy. This is a well established proxy that capitalizes on the relation between biologically mediated barite formation in the water column and its accumulation in marine sediments (Paytan et al., 1996; Eagle et al., 2003). Ba content also depends on sediment provenance, sedimentation rates, barite preservation, Ba cycling within sediments and lateral transport (Mercone et al., 2001; Sanchez-Vidal et al., 2005). These factors can compromise the Ba excess signal, and Ba-based proxies must be used with caution. Nevertheless, Ba based proxies have been used...
extensively for paleoproductivity reconstructions in the Mediterranean basins, and seem to be reliable (e.g., Dehairs et al., 1987; Emeis et al., 2000; Martínez-Ruiz et al., 2000, 2003; Weldeab et al., 2003; Paytan et al., 2004; Nieto-Moreno et al., 2011). We note that no indications for barite dissolution have been observed at this site.

Si/Al, Mg/Al and Zr/Al ratios in the Mediterranean region have been extensively used as proxies for terrigenous input or sediment supply that can be linked to environmental conditions in the source areas (e.g., Wehausen and Brumsack, 1999; Martínez-Ruiz et al., 2000; Moreno et al., 2002; Weldeab et al., 2003; Frigola et al., 2008). Recent studies demonstrate that variations in Zr/Al ratio is mainly relate to Sahara input, because Sahara dust is the main source for heavy minerals into marine basins (Rodrigo-Gámiz et al., 2011). Variations in Mg and Si content show a more complicated pattern in this basin because they can be related with different detrital or carbonate phases such as chlorite and dolomite in the case of Mg or Quartz and other silicates in the case of Si. However, increase in Mg/Al and Si/Al are mainly inversely correlated with Zr and used in conjunction with Zr/Al ratios.

4. Results: correlations of continental and marine records

The two independent 14C age models of the Gorham’s Cave sequence show almost identical results (Fig. 4). Thus, we accept these data as valid for correlation of marine and continental records. Cave openings, slope breccias, and stalactite falls were dated using radiocarbon and U-series methods in calcite flowstone seals (Tables 3 and 4). Obtained dates and extensive fieldwork were used to determine the timing of local seismic activity that resulted in the geomorphological changes summarized in Table 3 and Fig. 2 (Mattey et al., 2008; Rodríguez-Vidal et al., 2008). The regional paleoseismic evolution is based on data from the Bay of Cádiz and Upper Pleistocene beach deposits published in Gracia et al. (2008). Regional comparisons between coeval structures suggest a vertical tectonic uplift of about 25 m (~0.6 mm yr⁻¹ for the last 30 ka). An extensive review of relevant data indicates massive tectonic activity in the region from 22 to 25 cal. kyr BP, specifically, in the vicinity of the last Neanderthals’ cave occupation in Gibraltar, between 28 and 30 cal. kyr BP (Fig. 2).

The new results from high resolution analysis of the marine sediment record are plotted in Figs. 2b, c, d, e, f and 3a, b, c. Proxy interpretation can be found in Rodrigo-Gámiz et al. (2011) and references therein. These records show oscillations in SST and salinity (Fig. 2c, d, e), ocean productivity (Baexcess) (Fig. 3a), and fluvial-detrital/aeolian input (e.g. Si/Al, Mg/Al and Zr/Al) (Figs. 2 and 3). Based on the marine record, the lowest temperatures (7 °C during winter), higher productivity (Baexcess), and highest aeolian/detrital input were during Heinrich...
periods H4, H3 (Marine Isotope Stage 3; MIS 3), and H2 (MIS 2), corresponding to ~40, ~30, and ~24 cal. kyr BP respectively (Fig. 3b, c). In general, D–O interstadial conditions are characterized by relatively high temperatures, high productivity levels, low aeolian input, and relatively low detrital input. D–O stadial conditions in contrast were distinguished by low temperatures, low marine productivity, high aeolian input and highly variable detrital input, although aeolian inputs were not as extreme as during H4, H3, and H2 (gray bars Figs. 2 and 3). These data are consistent with previous studies throughout the Alboran Sea basin (e.g. Cacho et al., 2002; Moreno et al., 2005; Fletcher and Sánchez Goñi, 2008), with the exception of the high productivity seen during the Heinrich events.

5. Discussion

Slope-erosion events from 35 to 32 cal. kyr BP appear to be related to transitions associated with Dansgaard–Oeschger (D–O) cycles: Greenland Stadial 7 (GS-7), Greenland Interstadial 6 (GI-6), and GS-6, according with the nomenclature proposed in Lowe et al. (2008). These events are identified in the marine record as sharp increases in detrital input, as indicated by high Mg/Al and Si/Al ratios (Fig. 2f, g). Obtained and reviewed data do not identify any significant tectonic activity, pointing to climatic changes, specifically dry intervals, as triggering factors for slope-erosion events. Climate impacts on geomorphology in this region have been previously described (e.g., Goldberg and Macphail, 2006; Schulte et al., 2008), and changes in sedimentation rates associated with increased terrigenous input in marine records have also been described for this period (from GS-7 to GS-6) (e.g. Moreno et al., 2004; Sánchez Goñi et al., 2008). The observed correspondence indicates the utility of Mg/Al and Si/Al ratios not only as proxies of fluvial input, but also as recorders of high detrital input events, such as those caused by high erosion during rapid climate changes (Rodrigo-Gámiz et al., 2011).

Rock avalanches in Gibraltar between ~29 and 27 cal. kyr BP (Fig. 2, Table 3) correspond with the D–O GI-3 and GS-3 transition, despite dating uncertainties. Between 28 and 27 cal. kyr BP also, a major drop in sea level occurred, mirrored by SST and detrital proxies Mg/Al and Si/Al (see black arrow in Fig. 2). These simultaneous changes point to strong marine–land connections, as proposed by Goldberg and Macphail (2006), and indicate that some slope instabilities seen at the Gibraltar...
promontory were mostly likely a regional phenomenon throughout the surrounding Alboran Sea high relief region.

The origin of this correspondence illustrates the role of climate in controlling chemical/physical weathering and vegetation cover in this region (Turon et al., 2003; Fernández-Salas et al., 2008) and sea-level triggering slope stability (Mienert et al., 2003). Such relationships between climate, vegetation cover, weathering, detrital input to the basin and eustatic signals have been described in other areas (Marsaglia et al., 2004; Borgatti and Soldati, 2010; Bourget et al., 2010; Schneider et al., 2010). In the Mediterranean region the intensities and amounts of soil loss and runoff on sloping land are governed by rainfall patterns and vegetation cover (e.g., Durán Zuazo et al., 2006). In the South Iberia margin, close to the marine site studied, alpine mountain chains (>3000 m above sea level) with high slopes are located close to the coast. Such conditions are conducive to extreme erosion rates (Calvache et al., 1997; Pérez-Peña et al., 2010). Indeed, recent studies in the Iberian Peninsula demonstrate that rapid climate transitions towards arid conditions enhance flood erosion events (e.g., Domínguez-Villar et al., 2012). Our marine and continental records are both indicative of climatically- and eustatically-induced erosion events in the region.

Nevertheless, not all climate change transitions indicated by the marine core appear to be recorded in the continental records, and vice versa. This may be related to the pre-conditioning, feedback, and threshold characteristics of natural processes (e.g., Goldberg and Macphail, 2006). To investigate the potential impacts of environmental change and particularly climate changes on human populations we compare the physical/environmental records with cave occupation records. Archeological data indicate H. spp. Mousterian occupation in Gorham’s Cave between ~39 and 28 cal. kyr BP with three occupational hiatuses in the following order: from ~40 to 38.5, from ~30.5 to 29.3, and from ~28 to 22.5 cal. kyr BP, when H. spp. Upper Paleolithic technologies appear in the record. The persistence of H. spp. occupation at this site is a testimony to the high level of adaptation of H. populations to the different climate and environmental changes that took place (e.g., Finlayson and Carrión, 2007). The recorded hiatuses warrant comparison with the timing of climatic and geomorphological changes.

Described cave openings associated to slope-erosion during the D–O GS–7, GI–6, and GS–6 do not appear to have affected the settlement of Gorham’s Cave. Only during the Heinrich periods, characterized by cold, arid, and windy conditions (Figs. 2 and 3), and associated with major oceanographic changes (Sierro et al., 2005, 2009), is abandonment of the Gibraltar area observed. The relationship between erosive unconformities and other hiatuses promoted by paleo-environmental changes have been described in other circum-Mediterranean regions during the MIS 3 (Abruy et al., 2011; Müller et al., 2011). However, H. spp. populations remained in other South Iberian locations during these periods (Cortés-Sánchez, 2007). The different response of the population in Gibraltar compared to other sites may suggest that the hiatuses in Gibraltar might have been caused by local factors rather than regional climate impacts. Local conditions that can limit occupation include reduction in access to caves due to blocking of cave entrances. Indeed, our study indicates that paleo-dunes were ubiquitous in Gibraltar and movement of such dune systems can block cave entrances. For example, Forbes’ Quarry was sealed by dunes between 40,650 and 39,120 cal. yr BP when dunes completely filled the Ibex Cave (300 m asl) (Fig. 5). Dates from Gorham’s Cave entrance indicate a reduced entrance to the cave since 47.5 cal. kyr BP, and several undated dune progradation episodes may have occurred after this time (Figs. 6 and 7). These records imply high sensitivity of the surrounding Gorham’s area to dune deposits, or some other cave-blocking phenomenon (Figs. 6 and 7). The inferred dune accumulations would seem to correspond to episodes of major aeolian input seen in marine cores during H4 period (Fig. 3) and strong dune system activity has been observed during Heinrich events in other Mediterranean locations (Roskin et al., 2011). Dune development is a reliable proxy for past windiness (Telfer and Thomas, 2006), and it is possible that during these periods with intense winds, high aeolian input and dune advance, cave access/hospitality conditions deteriorated to led to cave abandonment. In addition, intense tidal level variations took place during Heinrich periods (Arbic et al., 2004), making the rocky intertidal zone more exposed. In such conditions the opportunity of coastal foraging activities increases and populations are likely to move to coastal areas. Indeed, the use of shellfish has been a resource for H. spp. (Colonese et al., 2010) and evidence of gathering and consumption of molluscs can be traced back at least 150 ka in this area (Cortés-Sánchez et al., 2011). Therefore, the upper Gibraltar cave system including Gorham’s Cave, appears to have been less attractive to occupation during H4 and H3.

Table 3

<table>
<thead>
<tr>
<th>Location/ Dated event</th>
<th>Lab. code</th>
<th>Field no.</th>
<th>14C age (yr)</th>
<th>Calibrated age (1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanguard North/</td>
<td>GB 0312</td>
<td>GB 0312</td>
<td>19,300 ± 200</td>
<td>23,060 ± 320 cal. BP</td>
</tr>
<tr>
<td>Palaeoseismic stalactite-fall event sealed by carbonate flowstones Forbes’ Quarry/</td>
<td>R-2660</td>
<td>GB 0011</td>
<td>22,300 ± 500</td>
<td>26,850 ± 670 cal. BP</td>
</tr>
<tr>
<td>R-2688</td>
<td>GB 0701</td>
<td>Beta 222878</td>
<td>39,210 ± 480</td>
<td></td>
</tr>
<tr>
<td>In situ shell associated to ephemeral lake associate to Aeolian Dune deposit Forbes’ Quarry/</td>
<td>Beta 228879</td>
<td>GB 0702</td>
<td>40,650 ± 450</td>
<td></td>
</tr>
<tr>
<td>R-2662</td>
<td>GB 0314</td>
<td>26,200 ± 500</td>
<td>30,820 ± 320 cal. BP</td>
<td></td>
</tr>
<tr>
<td>Rosia Bay/</td>
<td>GB 0301</td>
<td>17,700 ± 250</td>
<td>21,110 ± 410 cal. BP</td>
<td></td>
</tr>
<tr>
<td>Horizontal in situ speleothems</td>
<td>R-2665</td>
<td>GB 0002</td>
<td>29,200 ± 800</td>
<td>32,800 ± 910 cal. BP</td>
</tr>
<tr>
<td>St. Michael’s Cave/</td>
<td>GB 0701</td>
<td>39,210 ± 480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonate deposit with first external detrital input associate to cave opening Bray’s Cave/</td>
<td>GB 0208</td>
<td>28,130 ± 550</td>
<td>33,920 ± 1170 cal. BP</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>239U</th>
<th>234U</th>
<th>230Th</th>
<th>232Th</th>
<th>234U/238U</th>
<th>230Th/232Th</th>
<th>230Th/234U</th>
<th>T (ka BP)</th>
<th>234U/238U</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB0704a</td>
<td>4.80 ± 0.10</td>
<td>5.22 ± 0.11</td>
<td>1.85 ± 0.05</td>
<td>0.059 ± 0.007</td>
<td>1.089 ± 0.019</td>
<td>31.2 ± 3.9</td>
<td>0.3546 ± 0.0124</td>
<td>47.2 ± 2.1</td>
<td>1.101 ± 0.021</td>
</tr>
<tr>
<td>GB0704b</td>
<td>6.90 ± 0.10</td>
<td>7.31 ± 0.11</td>
<td>2.77 ± 0.07</td>
<td>0.016 ± 0.004</td>
<td>1.059 ± 0.010</td>
<td>176 ± 40</td>
<td>0.3789 ± 0.0116</td>
<td>51.4 ± 2.0</td>
<td>1.068 ± 0.011</td>
</tr>
</tbody>
</table>
In order to obtain shellfish resources, populations could have been moved to coastal areas such as that the lower Gibraltar cave system (e.g., Vladis Reef; Fig. 1 and Rodríguez-Vidal et al., 2011), or the Iberian Atlantic side (Fa, 2008). Although this affirmation could be coherent with the increase in marine productivity proxies during Heinrich periods (Fig. 3a), more data are needed to corroborate this hypothesis.

The last Gorham’s archeological hiatus between 28.0 and 22.5 cal. kyr BP represents the transition from the last H. spp. populations using Mousterian industries to the first H. spp. Upper Paleolithic levels of occupation. We observed that this time interval is characterized by progressive cooling in SSTs (see black arrow in Fig. 2f) and winter SST below 7 °C were reached. This progressive cooling was coupled with severe droughts that occurred between 28.0 and 25.5 cal. kyr BP (e.g., Beaudoin et al., 2007). Despite the cold conditions, it is important to note that large cold-adapted fauna were almost absent in the North and South Iberian Peninsula between 31 and 26 cal. kyr BP (Álvarez-Lao and García, 2010). Another distinctive feature of this last hiatus is sea-level variation, with falls of > 20 m (Siddall et al., 2003) (Fig. 4a). Simultaneously, the studied records show that the riverine input reached a minimum (Fig. 3b) and the aeolian input reached a maximum at 25.5 cal. kyr BP (Fig. 3c), probably of the same age of the undated dune progradation episodes that almost filled Gorham’s Cave entrance (Fig. 7).

Following this time interval (between 28.0 and 25.5 cal. kyr BP) and specifically during H2, the conditions became even more extreme both globally and regionally (e.g., Bout-Roumazeilles et al., 2007; Jiménez-Espejo et al., 2007). The period is characterized by high atmospheric dust transport to Greenland (Rohling et al., 2003) and very cold SSTs (Martrat et al., 2004, 2007 and this study). These changes promoted intense winds from the Sahara and an increase in aeolian deposition in South Iberia (Bout-Roumazeilles et al., 2007; Costas et al., 2012). This intense aeolian activity and dryness is recognized by low fluvial input in the studied marine record (Fig. 2f, g), but also throughout the entire Mediterranean, and from the western regions (e.g., Combourieu-Nebout et al., 2002; Weldeab et al., 2003; Jouet et al., 2006; Fernández et al., 2007; Naughton et al., 2009) to the Levant (Bartov et al., 2003; Vaks et al., 2007).

In addition to the global climatic impacts, at a local scale, a broad period of intense seismic activity apparently occurred during H2. Our data indicate major stalactite falls and landslides (Fig. 2) probably...
related to earthquakes (Bolt, 2004) during this time interval. Evidence of coetaneous instabilities is recognized in other geo-systems along the Cádiz coast (Gracia et al., 2008) and in two nearby archeological sites, Nerja Cave and Bajondillo Cave (Cortés-Sánchez et al., 2004; Cortés-Sánchez, 2007). In the latter, located 90 km east of Gibraltar, an instability event was dated at circa 24.3 cal. kyr BP by thermoluminescence. These events have been interpreted as paleo-seismic block falls and they are associated with a sedimentary hiatus between 24.3 and 22.1 cal. kyr BP (14C-AMS) (Cortés-Sánchez et al., 2004; Cortés-Sánchez, 2007). In Nerja Cave, the fallen blocks from the ceiling indicate seismic activity between 25.6±4.8 and 23.4±2.3 ka (Cortés-Sánchez et al., 2004) and a sedimentary hiatus has been observed between 21 and 19 cal. kyr BP (Aura Tortosa et al., 2002). Evidence of the confluence of extreme atmospheric, hydrological, and tectonic events have also been invoked in order to explain the unusual river incision observed in the South Iberian rivers (>15 m) at this time (Schulte et al., 2008) and the immense size of the megaturbidite (60,000 km² and 500 km³) deposited in the Balearic basin (Rothwell et al., 1998; Maslin et al., 2004; Owen et al., 2007).

The fluctuating environmental conditions during the stadial and interstadials though the MIS 3 and MIS 2 were also accompanied by changes in fauna. In contrast to the southern France and the Cantabrian–Catalonian regions, the south of the Iberian Peninsula was far from the favorite migration route of large mammals (e.g., Finlayson and Carrión, 2007; Álvarez-Lao et al., 2012), nevertheless, after 25.5 cal. kyr BP, cold-adapted mammals spread along the northern Iberian Peninsula (Álvarez-Lao and García, 2010, 2011). These mammals could have been a factor in new displacements along the Iberian Peninsula, despite no cold faunas has been found during this period in southern Iberia to the present.

6. Conclusions

Correspondence between terrestrial and marine records in the Gibraltar promontory and the Alboran basin point to climate and sea level changes as major trigger for slopes instability, erosion and detrital input. Major transitions between humid and arid periods are seen during isotopic stages D–O GS-7, GI-6, and GS-6 and GI-3 to GS-3. The Gorham’s Cave chronological sequence show three occupational hiatuses associated with the Heinrich periods H4, H3 and H2. The abandonments of the cave during H4 and H3 appear to be linked to the prevailing cold and arid conditions which impact local geomorphologic factors, likely to be coastal dune system activity, and enhanced tidal level variations which encouraged migrations to coastal locations. During the last described hiatus between 28 and 23 ka, a confluence of environmental variations including sea-level fall, harsh temperature oscillations, aridification, river incision processes, and marked seismic activity in the South Iberian Peninsula was the scenario where the H. spp. transition occurred.

Acknowledgments

The authors are grateful for support from the Gibraltar Government to work in Gorham’s Cave. This study was supported by FEDER and Spanish MICINN projects FEDER/CGL-2012-34717, FEDER/CGL-2009-06988, CGL2009-07603, CGL2010-15810/BTE, CMT2009-07715, and CSD2006-00041, 200800050084447 from MARM, Project RNM 05212, and Research Group 0179 (Junta de Andalucía).We thank the Training-Through-Research Programme (UNESCO — Moscow State University) for core material recovery. F. J. Jiménez-Espejo acknowledges the funding from the CSIC “JAE-Doc” postdoctoral program. A.G.-A. was also supported by a Juan de la Cierva contract from the Spanish Ministerio de Ciencia e Innovación. This work is a contribution to the IGCPs 526 (Risks, resources, and record of the past on the continental shelf), 567 (Earthquake Archaeology and Palaeoseismology), and 588 (Preparing for coastal change). We are likewise grateful to E. Holanda, E. Abarca, C. Niembro, L. López, J. Santamarina and D. Ortega for their laboratory assistance.

Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 1136–1151.

Weldeab, S., Siebel, W., Wehausen, R., Emeis, K.C., Schmiedl, G., Hemleben, C., 2003. Late Pleistocene sedimentation in the Western Mediterranean Sea: implications for productivity changes and climatic conditions in the catchment areas. Palaeogeography, Palaeoclimatology, Palaeoecology 190, 121–137.

